Temperature of Multibubble Sonoluminescence in Water

نویسندگان

  • Yuri T. Didenko
  • William B. McNamara
  • Kenneth S. Suslick
چکیده

Sonoluminescence (SL) spectra were collected from water doped with several organic liquids at low concentrations. Most of the organic substances studied show emission from C2 and an overall decrease in the intensity relative to SL from pure water. This decrease is due to the consumption by the organic substrates of hydroxyl radicals and other incipient emitting species produced during sonolysis. Small concentrations of carbon disulfide do not lead to emission from C2 but do cause an increase in SL intensity across the spectral window, most likely due to its own fluorescence. Carbon tetrachloride does not change the intensity of water sonoluminescence but does exhibit C2 emission. This indicates that the dissociation of carbon tetrachloride inside the cavitation bubble is independent of the products of water sonolysis. Benzene shows the strongest C2 emission and was studied in the greatest detail. The emission of excited-state C2 arising from the sonication of benzene/water mixtures at 20 kHz was used to determine an effective emission temperature during cavitation in water. Interband analysis of the two C2 bands observed during irradiation of water/benzene mixtures at 278 K under Ar indicates an emission temperature of 4300 ( 200 K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-bubble sonoluminescence in air-saturated water.

Single bubble sonoluminescence (SBSL) is realized in air-saturated water at ambient pressure and room temperature. The behavior is similar to SBSL in degassed water, but with a higher spatial variability of the bubble position. A detailed view on the dynamics of the bubbles shows agreement between calculated shape stability borders but differs slightly in the equilibrium radii predicted by a ma...

متن کامل

Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe.

We review recent work on the use of sonoluminescence (SL) to probe spectroscopically the conditions created during cavitation, both in clouds of collapsing bubbles (multibubble sonoluminescence, (MBSL)) and in single bubble events. The effective MBSL temperature can be controlled by the vapor pressure of the liquid or the thermal conductivity of the dissolved gas over a range from ∼1600 to ∼900...

متن کامل

Influence of degree of gas saturation on multibubble sonoluminescence intensity.

The influence of the degree of saturation (DOS) of a gas in a solution on the intensity of multibubble sonoluminescence (MBSL) excited by ultrasound with a frequency of 261 kHz is investigated at various ultrasonic powers and with different concentrations of ethanol, which is added as a volatile solute. At relatively low powers and a high DOS, low ethanol concentrations give higher sonoluminesc...

متن کامل

Effect of noble gases on sonoluminescence temperatures during multibubble cavitation.

Sonoluminescence spectra were collected from Cr(CO)6 solutions in octanol and dodecane saturated with various noble gases. The emission from excited-state metal atoms serves as an internal thermometer of cavitation. The intensity and temperature of sonoluminescence increases from He to Xe. The intensity of the underlying continuum, however, grows faster with increasing temperature than the line...

متن کامل

A comparison between multibubble sonoluminescence intensity and the temperature within cavitation bubbles.

Cavitation bubble temperatures have been measured using a methyl radical recombination method and compared with the changes in the sonoluminescence intensity in aqueous ethanol solutions over a range of concentrations. Whereas the sonoluminescence intensity was decreased by more than 90% at low ethanol concentrations (<0.1 M), the measured bubble temperatures seem to be unaffected at this level...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999